Search results for "Differentiable function"

showing 10 items of 75 documents

Regularity of the solution to a class of weakly singular fredholm integral equations of the second kind

1979

Continuity and differentiability properties of the solution to a class of Fredholm integral equations of the second kind with weakly singular kernel are derived. The equations studied in this paper arise from e.g. potential problems or problems of radiative equilibrium. Under reasonable assumptions it is proved that the solution possesses continuous derivatives in the interior of the interval of integration but may have mild singularities at the end-points.

Algebra and Number TheoryMathematical analysisFredholm integral equationSingular integralIntegral transformFredholm theoryIntegral equationsymbols.namesakeSingular solutionsymbolsGravitational singularityDifferentiable functionAnalysisMathematicsIntegral Equations and Operator Theory
researchProduct

Initial Data for Non-Linear Evolution Equations and Differentiable Vectors of Group Representations

1995

Regularity properties of non-linear Lie algebra representations are defined. These properties are satisfied in examples given by evolution equations. We prove that this regularity implies that the set of C ∞ vectors for the non-linear group representation obtained by integration of the Lie algebra representation coincide with the set of C ∞ vectors of the linear part (the order one term) of this group representation.

AlgebraNonlinear systemLie algebra representationLie algebraDifferentiable functionWeak derivativeGroup representationMathematics
researchProduct

A regularized Newton method for locating thin tubular conductivity inhomogeneities

2011

We consider the inverse problem of determining the position and shape of a thin tubular object, such as for instance a wire, a thin channel or a curve-like crack, embedded in some three-dimensional homogeneous body from a single measurement of electrostatic currents and potentials on the boundary of the body. Using an asymptotic model describing perturbations of electrostatic potentials caused by such thin objects, we reformulate the inverse problem as a nonlinear operator equation. We establish Frechet differentiability of the corresponding operator, compute its Frechet derivative and set up a regularized Newton scheme to solve the inverse problem numerically. We discuss our implementation…

Applied MathematicsOperator (physics)Mathematical analysisFréchet derivativeBoundary (topology)Inverse problemComputer Science ApplicationsTheoretical Computer Sciencesymbols.namesakeNewton fractalPosition (vector)Signal ProcessingsymbolsDifferentiable functionNewton's methodMathematical PhysicsMathematicsInverse Problems
researchProduct

A remark on differentiable functions with partial derivatives in Lp

2004

AbstractWe consider a definition of p,δ-variation for real functions of several variables which gives information on the differentiability almost everywhere and the absolute integrability of its partial derivatives on a measurable set. This definition of p,δ-variation extends the definition of n-variation of Malý and the definition of p-variation of Bongiorno. We conclude with a result of change of variables based on coarea formula.

Change of variablesPure mathematicsPolish groupApplied MathematicsMathematical analysisNull set or empty setReal-valued functionHaar nullPartial derivativeAlmost everywhereCoarea formulaDifferentiable functionAnalysisMathematics
researchProduct

Differential properties of the Moreau envelope

2014

International audience; In a vector space endowed with a uniformly Gâteaux differentiable norm, it is proved that the Moreau envelope enjoys many remarkable differential properties and that its subdifferential can be completely described through a certain approximate proximal mapping. This description shows in particular that the Moreau envelope is essentially directionally smooth. New differential properties are derived for the distance function associated with a closed set. Moreover, the analysis, when applied to the investigation of the convexity of Tchebyshev sets, allows us to recover several known results in the literature and to provide some new ones.

Closed setNorm (mathematics)Mathematical analysisDifferentiable functionSubderivative[MATH]Mathematics [math]16. Peace & justiceAnalysisConvexityVector spaceMathematics
researchProduct

REPEATED GAMES WITH PROBABILISTIC HORIZON

2005

Repeated games with probabilistic horizon are defined as those games where players have a common probability structure over the length of the game's repetition, T. In particular, for each t, they assign a probability pt to the event that "the game ends in period t". In this framework we analyze Generalized Prisoners' Dilemma games in both finite stage and differentiable stage games. Our construction shows that it is possible to reach cooperative equilibria under some conditions on the distribution of the discrete random variable T even if the expected length of the game is finite. More precisely, we completely characterize the existence of sub-game perfect cooperative equilibria in finite s…

Computer Science::Computer Science and Game TheorySociology and Political ScienceSequential gameProbabilistic logicComputingMilieux_PERSONALCOMPUTINGGeneral Social SciencesPrisoner's dilemmaConvergence (routing)Repeated gameApplied mathematicsrepeated games probabilistic horizon cooperationDifferentiable functionStatistics Probability and UncertaintyMathematical economicsRandom variableGeneral PsychologyMathematicsEvent (probability theory)
researchProduct

The Local Fractional Derivative of Fractal Curves

2008

Fractal curves described by iterated function system (IFS) are generally non-integer derivative. For that we use fractional derivative to investigate differentiability of this curves. We propose a method to calculate local fractional derivative of a curve from IFS property. Also we give some examples of IFS representing the slopes of the right and left half-tangent of the fractal curves.

Computer Science::GraphicsIterated function systemFractalFractal derivativeGeneralizations of the derivativeMathematical analysisAstrophysics::Instrumentation and Methods for AstrophysicsDerivativeDifferentiable functionComputational geometryMathematicsFractional calculus2008 IEEE International Conference on Signal Image Technology and Internet Based Systems
researchProduct

Strict quasi-concavity and the differential barrier property of gauges in linear programming

2014

Concave gauge functions were introduced to give an analytical representation of cones. In particular, they give a simple and a practical representation of the positive orthant. There is a wide choice of concave gauge functions with interesting properties, representing the same cone. Besides the fact that a concave gauge cannot be identically zero on a cone(), it may be continuous, differentiable and even on its interior. The purpose of the present paper is to present another approach to penalizing the positivity constraints of a linear programme using an arbitrary strictly quasi-concave gauge representation. Throughout the paper, we generalize the concept of the central path and the analyti…

Control and OptimizationLinear programmingSimple (abstract algebra)Applied MathematicsMathematical analysisDifferentiable functionManagement Science and Operations ResearchDifferential (infinitesimal)Gauge (firearms)Representation (mathematics)Interior point methodOrthantMathematicsOptimization
researchProduct

Multiplicity of fixed points and growth of ε-neighborhoods of orbits

2012

We study the relationship between the multiplicity of a fixed point of a function g, and the dependence on epsilon of the length of epsilon-neighborhood of any orbit of g, tending to the fixed point. The relationship between these two notions was discovered before (Elezovic, Zubrinic, Zupanovic) in the differentiable case, and related to the box dimension of the orbit. Here, we generalize these results to non-differentiable cases introducing a new notion of critical Minkowski order. We study the space of functions having a development in a Chebyshev scale and use multiplicity with respect to this space of functions. With the new definition, we recover the relationship between multiplicity o…

Critical Minkowski orderDynamical Systems (math.DS)Fixed pointsymbols.namesakeMinkowski spaceFOS: MathematicsCyclicityDifferentiable functionHomoclinic orbitlimit cycles; multiplicity; cyclicity; Chebyshev scale; Critical Minkowski order; box dimension; homoclinic loopMathematics - Dynamical SystemsAbelian groupPoincaré mapMathematicsBox dimensionApplied MathematicsMathematical analysisMultiplicity (mathematics)Limit cyclesMultiplicityPoincaré conjecturesymbols37G15 34C05 28A75 34C10Homoclinic loopAnalysisChebyshev scaleJournal of Differential Equations
researchProduct

Indefinite integrals of special functions from hybrid equations

2019

Elementary linear first and second order differential equations can always be constructed for twice differentiable functions by explicitly including the function's derivatives in the definition of ...

Differential equationApplied Mathematics010102 general mathematics010103 numerical & computational mathematicsFunction (mathematics)01 natural sciencesLegendre functionSecond order differential equationssymbols.namesakeSpecial functionssymbolsApplied mathematicsDifferentiable function0101 mathematicsComputer Science::DatabasesAnalysisBessel functionMathematicsIntegral Transforms and Special Functions
researchProduct